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Templates for Exploratory Library Preparation. Derivatization of a
Functionalized Spirocyclic 3,6-Dihydro-2H-Pyran Formed by
Ring-Closing Metathesis Reaction

Michael A. Walters,* Frances Ld, Prashant Deshmuk, and Diana O. Omecinsky

Pfizer Global Research and belopment, Ann Arbor Laboratories, 2800 Plymouth Road,
Ann Arbor, Michigan 48105

Receied April 30, 2001

The preparation of a novel spirocyclic template fréent-butoxycarbonyl-4-piperidone is reported. The
synthesis oN-(tert-butoxycarbonyl)-1-oxa-9-aza-spiro[5.5]undec-3-ef)ddr exploratory library generation
involves ketone allylation, etherification, and ring-closing metathesis (RCM) reactions. Epoxidation of the
alkene formed in the RCM followed by addition of volatile amines to the epoxides led rapidly to an exploratory
library of structurally novel spirocyclic amino alcohols. The addition of amines to epoxides derived from

was determined to occur primarily at C3.

Introduction

The chemical processes that are hallmarks of combinatoria
chemistry are generally applied in the preparation of lead-

optimization or lead-generation librarig$his latter exercise,

degassed C}Ll, solution of 3 at room temperature with

|9—10% of Grubbs’ catalyst for~15 h. This gave4 in

approximately 46-60% vyield after Kugelrohr distillation.
Deprotection of4 using concentrated ethereal HCI gave

also known as exploratory library synthesis, usually involves €OmMpounds as a white powder in- 30% overall yield from
the preparation of novel templates to which are appended!- Compounds was transformed into epoxidésin a two-

diversity elementd Among many strategies, two criteria that

step parallel process involving acylation or sulfonylation

have been applied to the design of useful templates are thelEtN, 6{1—3} in Chart 1) and epoxidation with MCPBA
incorporation in the molecular core of easily transformable N CHzClz.

functional groups (diversity-enabling moieties, DEKahd

A small exploratory library off3-amino alcohols was

the novel spatial arrangement of these functional groupsprepared to highlight the utility of these new spirocyclic

within the templat@.We report herein the application of ring-

closing metathesis (RCM) to the preparation of a novel,

spirocyclic templaté, which fits these two criteria, and its
use as the core of an amino alcohol libréry.
Ring-closing metathesis is a powerfu=C bond-forming

templates. Aminolysis of the unpurified epoxidésl—3}

was effected by heating them in ethanol at°®with an
excess (1520 equiv) of low molecular weight primary and
secondary amine®{1—4} (Chart 2) for 15-24 h1! Con-
centration of the reactions in vacuo gave good to quantitative

reaction that occurs under very mild conditions and is conversion to theS-amino alcohols10{6(1—3),9(1—4)}
generally undiminished in its efficiency by the presence of (Table 1; major isomer shown (vide infra) in Schemé?2).

ancillary functional group$A ring-forming, spiroannulatich

The formation of both regioisomeric amino alcohd®

process based on this methodology that would convert readilyyas observed in these reactions. Surprisingly, while the

available ketones into novel DEMsvould lead to a wide
variety of useful core molecules, particularly if applied to
ketones already possessing a site of potential diversity.

Results and Discussion

With the potential of such compounds in mind, the novel
hydrochloride salb was prepared from commercially avail-
abletert-butoxycarbonyl-4-piperidonel) via the four-step
procedure outlined in Schemet4Addition of allylmagne-
sium bromide tdl in ether at room temperature furnishzd
Etherification of 2 was accomplished using excess NaH
(DMF) followed by treatment of the incipient alkoxide with
excess allyl bromide to gives. The key ring-closing

metathesis reaction was cleanly effected by treatment of a
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regiochemical control in the reaction of nucleophiles with
3,4-epoxytetrahydropyrari,3,'® and the cis and trans dia-
stereomers of 2-(benzyloxy)-3,6-dihydrétpyran, 14, has
been studied extensivel§apparently no comparable inves-
tigations have been carried out on 6,6-dialkyltetrahydropyran-
3,4-epoxides such a5 (Figure 1). To more rigorously
establish the probable structures of the amino alcohols
10{6(1—3),9(1—4)}, epoxide8{2} was treated with 40%
CH3NH2/H,O or pyrrolidine/EtOH at 80°C. The major
regioisomer formed in each reaction was that resulting from
attack of the nucleophile at C-3 of the epoxidesd and
16b).15

This assignment is consistent with the regiochemistry
observed in the reaction of the structurally related epoxide
17 under the same conditions (Figure 2). Nucleophilic attack
was again favored at C-3, a 3:1 ratio of isomers being

© 2002 American Chemical Society
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Scheme 1. Synthesis of Spirocyclic Epoxides

0 / —
C =
2 Yy ——H0 — ° — %
i ii iii O
N N N N.g
Boc \BOC

‘Boc
1 2 3 4
iv
O
=
- 6, v =
vi (0]
O
N.y-R N.y-R © NH
HCI
X =CO0, SO,
8 7 5

aKey: (i) CH;=CHCHMgBr (1.1 equiv, E£O, room temp); (ii) CH=CHCH,Br (3 equiv, 4 equiv NaH1 M DMF, room temp); (iii) Ci(CysP)Ru=CHPh
(CH,Cly, room temp); (iv) HCI (g), BO; (v) 6{1—3}, EtsN, CHxCly; (vi) MCPBA, CH.Cl,.

Chart 1. Acyl and Sulfonyl Building Blocks5{ 1—3}
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Chart 2. Amine Building Blocks9{ 1—4} RoR{N 4
3
NH o) “NH \onG
O\/‘ @/\NHZ ! N
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o 16aRy =H, Ry = CH;
HO™™>""~""NH, bRy, Ry = (CHp)s
4 Figure 1. Related epoxides and the major regioisomer formed in

the reaction oB{2} with amines.
Table 1. Yield and HPLC Purity of Amino Alcohols

10{6(1—3),9(1—4)} amino alcohols

R
0.4 12 (;)";i
yield? (%), purity? (%) 3 RS
6{1} acyl or o) o
sulfonyl chloride 6{2} 6{ 3}
17

91} amine 78, 100 73,98 74,100 18aR, =H, R, = CHs
92} 78, ND 80, 74 82,78 b Ry, Ry = (CHy),
A3} 73,99 74,97 88,91 major isomer
o4} 78,81 74,100 81, 100 h ‘ (jjd
Fi 2. Regi ist i ition .
aBy weight (mixture of regioisomersy.HPLC purity. ND = gure eglochemistty of amine addition
not determined. Scheme 3.Addition of an Amine Nucleophile to a

1,1-Disubstituted Cyclohexane-3,4-epoxide
Scheme 2.Reaction of Template with Primary and ISUbSHU y X poxi

Secondary Amines Oua OH AdeN

AdeN,__~ HO,,
0 R2._ _R® R2 OH 3 AdenNNa !
N [ oTr ——————— ™ oTr * oTr
H /3 N DMF
o 9 OTr reflux OTr OTr
1 28 %
N \”/ R EtA H O N 19 4 : 1
0

H1
70( (~6:1 ratid® with diethylamine under conditions analogous
to those employed herein) and that the 1,1-disubstituted
cyclohexane epoxid&9 (Scheme 3) gives predominantly the
obtained with methylaminel1@a), while a 7:1 ratio of C-3 regioisomer when treated with the sodium salt of
regioisomers was produced with pyrrolidinesp).'® adeninge'®
While we have not yet assigned the structure of the The regiochemistry of the reaction of epoxideand17
predominant isomer in all reactions 8f the major isomer  with simple amines under nonchelating conditions is con-
being related td6 and18is consistent with the observations sistent with a consideration of both thérEu-Plattner rulé’
that 13 reacts with nitrogen nucleophiles primarily at C-3 and the steric environment experienced by a nucleophile

8 10
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Figure 3. Rationalization of the regiochemistry of amine addition
to spirocyclic epoxided6.

approaching the epoxide conform@&®&and21 with an §,2
trajectory (Figure 3). The Fat—Plattner rule suggests that
nucleophilic attack or20 should give rise to predominantly
C-3 addition of the nucleophile, while amine addition2tb
should preferentially form the C-4 amine. Consideration of
the steric interactions experienced by an incoming nucleo-
phile in each case suggests that the $ing opening of
epoxide 20 should be kinetically favored over attack on
epoxide?1, leading to preferential formation of regioisomer
22 (as observed) over preference2a

Conclusion

In summary, we have employed RCM to create a readily

Journal of Combinatorial Chemistry, 2002, Vol. 4, No. 227

solutions in CDC13 unless otherwise indicated. Coupling
constantsJ) are reported in hertz. IR spectra were taken as
KBr pellets or neat films, and absorptions are reported in
cm 1. The HPLC purity of arrayl0 was determined using
an Altima C18, 5um, 150 mm Alltech column. The mobile
phase was CECN in H,O (+0.1% TFA) from 5% to 100%
over 10 min, and the flow rate was 1 mL/min at 214 nM.

Synthetic Details. N-(tert-butoxycarbonyl)-1-oxa-9-aza-
spiro[5.5]undec-3-ened] was prepared from commercially
availableN-(tert-butoxycarbonyl)-4-piperidonel) without
purification of the intermediates.

N-(tert-butoxycarbonyl)-4-allyl-4-hydroxypiperidine (2).

A 250 mL round-bottomed flask was charged with 85 mL
of anhydrous ED and 5.0 g ofl (0.025 mol) and cooled
on an ice bath. To this cooled solution was added a total of
29 mL of allylmagnesium bromide (1.0 M in £, 0.029
mol), and the reaction mixture was allowed to slowly warm
to room temperature overnight. The reaction became heavy
with a white ppt. It was quenched by the dropwise addition
of 5 mL of NH,Cl(aq) and worked up with ED. The organic
extracts were dried over MgS@nd concentrated in vacuo
to give a quantitative yield o2 as a yellow-orange liquid.
This material was used in the next reaction without further
purification.

N-(tert-Butoxycarbonyl)-4-allyl-4-allyloxypiperidine (3).

A 250 mL round-bottomed flask was charged with 1.5 g of
NaH (0.038 mol) as a 60% dispersion in mineral oil. The
NaH was washed (% 6 mL) with anhydrous petroleum

ether and then slurried in 50 mL of anhydrous DMF with
the reaction flask in an ice bath. To this cooled slurry was
added 5.73 g (0.024 mol) of a solution &fin anhydrous

DMF. This reaction mixture was allowed to warm to room

functionalized, spirocyclic template and demonstrated its use l€Mperature over the courseloh and then recooled to ice-

in the preparation of libraries of novel compounds using

bath temperature and treated with 6.5 mL of freshly purified

combinatorial techniques. The reaction sequence by which(filtered through a basic alumina column) allyl bromide

4 was generated appears to be mild enough to apply to a(0-075 mol). The heterogeneous reaction mixture was
wide variety of other ketones. Future investigations in our femoved from the ice bath and stirred overnight. After
laboratory are aimed at exploring the reactivity of other 6,6- @pproximately 16-15 h at room temperature the reaction
disubstituted spirotetrahydropyran 3,4-epoxides with nucleo- Was cooled on an ice bath and quenched by the slow and

philes with an aim of gaining a further understanding of the
regioselectivity of these reactions.

Experimental Section

General. Unless otherwise indicated, all reactions were

run in capped 2 dram glass vials, which were agitated on an
orbital shaker. Heated reactions were run in a stationary heat

block. Commercially available reagents and solvents were
used without further purification. Anhydrous solvents were
purchased and employed without further dryittg.NMR

cautious addition of 100 mL of ¥ (warning: hydrogen
gas eolution!). The resulting mixture was extracted with 3
x 100 mL of EO, the combined EO extracts were washed
with 3 x 100 mL of H,O and 1x 100 mL brine, and the
organic extracts were dried over Mg&@iltration followed
by concentration in vacuo gave 5.35 §80% yield) of a
ight-orange liquid, which was used for the next reaction
without further purification.
N-(t-Butoxycarbonyl)-1-oxa-9-aza-spiro[5.5]undec-3-
ene (4).A 500 mL round-bottomed flask was charged with

spectra were recorded at the indicated field strength as100 mL of anhydrous CkCl, and 5.35 g of3 (0.019 mol)

solutions in deuteriochloroform (CDglunless otherwise
indicated. Chemical shifts are expressed in parts per million
(ppm, d) downfield from TMS and are referenced to CRCI
(7.24 ppm) as internal standard. Splitting patterns are
designated as s, singlet; d, doublet; t, triplet; g, quartet; m,
multiplet; comp, complex (or overlapping) multiplet; br,
broad. Coupling constants are given in hertz (H¥.NMR

and degassed using three evacuation/argon-fill cycles. In a
separate flask a degassed solution of 0.62 g sRAPCy).-
CHPh (0.75 mmol, 0.04 equiv) and 7.0 mL of anhydrous
CH,CI, was prepared. The solution 8fwas cooled on an

ice bath and then treated dropwise with the purple catalyst
solution over the course of 20 mipgution: gas eolution!).
Upon completion of this addition, the reaction mixture was

spectra were recorded at the indicated field strength asremoved from the ice bath and allowed to warm to room
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temperature and stirred overnight. After the reaction was

deemed complete By NMR of an aliquot, the solvent was

Walters et al.

Representative Preparation of §X}. Preparation of
N-Benzoyl-1-oxa-9-aza-spiro[5.5]undec-3,4-epoxide{@,

removed and the dark-brown liquid residue was taken up in X = CO, R= Ph). A flask was charged with 4.11 g Gf(R

50 mL of 25% EtOAc/hexanes. Compressed air was bubbled= Ph) and 80 mL of CECl, and, by portionwise addition,
through this heterogeneous mixture for 3 h, and it was then5.5 g of MCPBA (60-80% purity; 2 equiv). After the
passed through a small plug of silica gel to remove the mixture was stirred at room temperature for 24 h, the reaction
insoluble material. This solution was concentrated and was quenched with 25 mLfd M Na,SG; and diluted with

Kugelrohr distilled ¢1 mm, oven temp 0f~100°C) to give
2.28 g (47% yield) of the desired alkefi@s a clear, colorless
liquid. *H NMR (400 MHz): 6 5.72-5.62 (comp, 2 H),
4.06-4.04 (comp, 2 H), 3.733.70 (comp, 2H), 3.23.1
(comp, 2H), 1.92 (comp, 2H), 1.79..72 (comp, 2H), 1.4%
1.34 (comp, 11H)*C NMR (100 MHz): 6 155.1, 125.3,
122.7, 79.46, 68.81, 60.53, 489 (br), 35.51, 3533 (br),
28.65. IR (neat): 2920, 1696 cth Anal. Calcd for G4Haz
NOs: C, 66.37; H, 9.15; N, 5.53. Found: C, 66.69; H, 9.20;
N, 5.48.

1-Oxa-9-aza-spiro[5.5]undec-3-ene hydrochloride (5).
HCI(g) was bubbled through 100 mL of £ in an ice bath
cooled in a 500 mL round-bottomed flask. When enough
HCI(g) had dissolved to make the solution about 5 M, 10.5
g (0.041 mol) of4 were added in 50 mL of CiLl,. The

100 mL of EtOAc. The layers were separated, and the
aqueous layer was back-extracted with 100 mL of EtOAc.
The combined organic layers were washed with 30 mL

of saturated NaHCg@and with 50 mL of brine and then dried
over MgSQ. Filtration and concentration in vacuo gave 3.31
g (76%) of a sticky foam!H NMR (CDClz, 400 MHz): o
7.38-7.34 (m, 5H), 4.44.3 (m, 1H), 4.+-3.0 (comp, 8H),
2.2-1.2 (m, 6H).13C NMR (CDCk, 100 MHz): 6 170.4,
136.2,129.6, 128.5, 126.8, 68.76, 56.49, 55.63, 50.87, 43.23,
37.63, 34.31, 30.60, 25.16. M&/z (M + H)*, 274.0.
8{1,3} were prepared in an analogous fashion and used for
10 without further purification.

General Method for the Preparation of Amino Alcohols
10{X,X}. To an ethanolic solution &{1—3} (~30 mg, 0.1
mmol, 1 mL of EtOH) was added 25 equiv of volatile

solution rapidly became deep-orange and thick with a whitish amine9{1—4}. The reaction mixture was heated to 8D

precipitate. Afte 2 h atroom temperature, the reaction was
filtered and the white solid washed with 2 100 mL of
Et,0. The solid was dried in vacuo to give 6.89 g (88% yield)
of a white powder:H NMR (400 MHz, DMSO¢): 6 9.2—
9.0 (br comp, 2H), 5.69 (s, 2H), 3.99 (br s, 2H), 329
(comp, 2H), 2.96-2.87 (comp, 2H), 2.61.6 (comp, 6H).
13C (100 MHz, DMSO+dg): 6 125.8, 122.4, 67.16, 60.34,
35.09, 30.76. Anal. Calcd ford8;¢CINO: C, 56.99; H, 8.50;
N, 7.38. Found: C, 56.98; H, 8.68; N, 7.27.
Representative Preparation of {X}. Preparation of
N-Benzoyl-1-oxa-9-aza-spiro[5.5]undec-3-ene{Z}, X =
CO, R=Ph). A 100 mL round-bottomed flask was charged
with the amine hydrochloride sa (4.51 g, 23.8 mmol),
methylene chloride (35 mL), benzoyl chloride (3.0 mL, 3.76

for 15—20 h. The solutions were cooled to room temperature
and were concentrated in parallel using a centrifugal
evaporator to provide~20—30 mg of the desired amino
alcohols ¢ 73% yield, purity (LC)> 74%).

Preparation of 1-Oxa-spiro[5.5]undec-3,4-epoxideA
flask was charged with 3.12 g (0.02 mol) of 1-oxa-spiro-
[5.5]undec-3-ené?*8.46 g (0.049 mol) of MCPBA, and 200
mL (~0.1 M) of CH,Cl,. After the mixture was stirred
overnight at room temperature, the reaction mixture was
worked up with ether athl M NaSGO; and then dried over
MgSOQ.. Filtration and concentration of the organic extracts
gave 2.9 g (86%) of a volatile, colorless liquid. Purification
by column chromatography using 10% ethyl acetate/hexanes
as eluant gave 1.35 g of the desired epoxitté. NMR

g, 26.8 mmol), and a magnetic stir bar. The flask was cooled (CDCl, 400 MHz): 6 4.00-3.87 (m, 2H), 3.283.25 (m,

in an ice-water bath, and triethylamine (7.3 mL, 5.3 g, 52.4
mmol) was added by syringe over 10 min with stirring. The

1H), 3.10-3.08 (m, 1H), 1.841.17 (m, 14H).*C NMR
(CDCl, 100 MHz): & 69.14, 58.40, 49.34, 48.96, 37.95,

cooling bath was removed, and the reaction was allowed to 34.56, 33.04, 25.81, 21.85, 21.63.

stir at ambient temperature for 16 h. The reaction mixture

was filtered, and the solvent was removed from the filtrate.

Preparation of Amino Alcohols 16a and 16b.Ap-
proximately 0.09 g of epoxid&{2} was dissolved in 3 mL

The residue was taken up in hot hexanes (100 mL), and theof 40% CHNH, (agueous solution), and another 0.09 g was

resulting slurry was filtered. The solids were washed with

dissolved in 3 mL of EtOH and treated with 3QQ of

additional hot hexanes (100 mL), and the combined filtrates pyrrolidine (~10 equiv, 0.1 M). Both reactions were heated
were dried over magnesium sulfate, filtered, and concentratedto 80 °C for ~20 h and concentrated in vacuo. No further

to give a yellow oil (6.60 g). This oil was chromatographed
on a 6.5 cmx 35 cm silica gel column eluting with 50:50

purification was performed. The crude yield of amino
alcoholsl6aand16bwas 71% and 91%, respectively. For

ethyl acetate/hexanes. The product fractions were concen-16a 'H NMR (CH;OD, 400 MHz), mixture of isomers,

trated to give an 88% yield (5.40 g) of the desired product
as a pale-yellow oiltH NMR (CDClz, 300 MHz): 6 7.4 (s,
5H), 5.8-5.7 (m, 2H), 4.54.2 (br s, 1H), 4.24.0 (br s,
2H), 3.6-3.2 (comp, 4H), 2.£1.4 (comp, 5H)13C (CDCl,
100 MHz): ¢ 170.5, 136.5, 133.5, 129.7, 128.6, 127.0, 125.2,

integration relative t@ 7.4—7.3 (m), which was set to 5H:

0 7.4-7.3 (m, 5H), 4.36-4.27 (br m, 1H), 3.933.90 (m,
0.8H), 3.8-1.2 (comp, 18H)=C NMR (CH;OD, 100 MHz),
mixture of isomers:6 171.2, 135.9, 129.8, 128.5, 126.6,
72.08, 71.44, 67.06, 62.88, 61.53, 43.36, 37.70, 32.94. MS

125.1,122.5, 70.64, 68.93, 60.69, 59.09, 43.80, 38.25, 35.57m/z (M + H)*, 305.1. Forl6éb. 'H NMR (CH;OD, 400

35.40, 33.67, 25.46. M8z (M + H)*, 258.0.7{1,3} were

MHz), mixture of isomers, integration relative 807.32—

prepared in an analogous fashion and taken on without7.23 (m), which was set to 5H) 7.32—7.23 (m, 5H), 4.27

purification to8{1,3}.

4.24 (br m, 1H), 3.8-1.3 (comp, 22H)13C NMR (CH,0D,
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100 MHz), mixture of isomerss 171.2, 135.9, 129.8, 128.5,
126.6, 71.55, 71.34, 66.36, 65.76, 60.49, 51.61, 43.74, 43.47,

43.31, 38.05, 37.78, 22.82. M&z (M + H)*, 345.2.

Amino alcoholsl8aand18bwere prepared in quantitative

yield and, in an analogous fashion, from epoxidé For
18a, mixture of isomers!H NMR (CDCl;, 400 MHz): 6
3.88-3.84 (m, 1H), 3.68-3.53 (m, 2.3H), 3.363.27 (m,
1H), 3.17 (tr, 1HJ = 11 Hz), 2.62-2.58 (m, 0.33H), 2.38
2.31 (m, 5.66H), 1.941.82 (m, 3H), 1.66-1.22 (m, 16H),

1.07 (tr, 0.33HJ = 12 Hz). Integration relative to integral

of 3.88-3.84 multiplet, which is arbitrarily set to 1H3C

NMR (CDCl;, 100 MHz): 6 76.97, 74.29, 73.61, 70.09,
67.99, 64.37,63.71, 62.31, 62.31, 62.31, 58.64, 43.75, 39.86,
39.80, 39.12, 34.08, 32.55, 30.77, 30.31, 26.16, 22.05, 22.00,

21.64, 21.61. MSwWz. (M + H)*, 200.1; (M+ H + CHs-
CN)*, 241.1. For18b, mixture of isomerstH NMR (CDCls,
400 MHz): 6 3.8-3.7 (m, 1H), 3.56-3.44 (m, 0.44H),
3.31-3.28 (m, 0.11H), 2.#2.5 (m, 1.88H), 1.991.2 (m,
6.66H). Integration relative to integral 6f3.8—3.7 multiplet,
which is arbitrarily set to 1H*C NMR (CDCk, 100 MHz):

0 73.96, 73.87, 68.59, 66.01, 64.54, 64.08, 59.25, 57.50,
48.83, 47.82, 43.50, 40.00, 39.97, 32.14, 30.89, 30.39, 26.26,

26.19, 23.90, 23.72, 22.10, 22.05. M#& (M + H)*, 240.1.

Structural assignments were made on the basis of extensive
13C distortionless enhancement by polarization transfer
(DEPT), 'H—23C heteronuclear single gquantum coherence
(HSQC) or heteronuclear multiple-quantum coherenc (HMQC),
and *H—H correlation spectroscopy (COSY) data, which

were consistent with the structures as depicted.
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